

 Navigation

 	
 index

 	
 next |

 	flufl.password 1.4a1 documentation

flufl.password - Password hashing and verification

This package is called flufl.password. It provides for hashing and
verification of passwords.

Requirements

flufl.password requires Python 2.6 or newer, and is compatible with Python
3.

Documentation

A simple guide to using the library is available within this package, in
the form of doctests.

Project details

	Project home: https://gitlab.com/warsaw/flufl.password

	Report bugs at: https://gitlab.com/warsaw/flufl.password/issues

	Code hosting: git@gitlab.com:warsaw/flufl.password.git

	Documentation: http://fluflpassword.readthedocs.org/

You can install it with pip:

% pip install flufl.password

You can grab the latest development copy of the code using git. The master
repository is hosted on GitLab. If you have git installed, you can grab
your own branch of the code like this:

$ git clone git@gitlab.com:warsaw/flufl.password.git

You may contact the author via barry@python.org.

Copyright

Copyright (C) 2011-2015 Barry A. Warsaw

This file is part of flufl.password.

flufl.password is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

flufl.password is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License along
with flufl.password. If not, see <http://www.gnu.org/licenses/>.

Table of Contents

	Using the flufl.password package
	Hashing a password
	Available schemes

	Custom schemes

	Verifying a password

	User-friendly passwords

	NEWS for flufl.password
	1.4 (201X-XX-XX)

	1.3 (2014-09-24)

	1.2.1 (2012-04-19)

	1.2 (2012-01-23)

	1.1.1 (2012-01-01)

	1.1 (2011-12-31)

	1.0 (2011-12-31)

 Copyright 2004-2015, Barry A. Warsaw.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	flufl.password 1.4a1 documentation

Using the flufl.password package

This package comes with a number of password hashing schemes. Some are more
secure, while others provide for useful debugging. A hashed password follows
the syntax promoted in RFC 2307 [http://www.faqs.org/rfcs/rfc2307.html] (as best I can tell), having a basic format
of {scheme}hashed_password.

Hashing a password

You can create a secure hashed password using the default scheme, which
includes random data.

>>> from flufl.password import make_secret
>>> show(make_secret('my password'))
{SSHA}...

You can also create a hashed password using one of the other built-in
schemes.

>>> from flufl.password.schemes import SHAPasswordScheme
>>> show(make_secret('my password', SHAPasswordScheme))
{SHA}ovj3-hlaCAoipokEHaqPIET58zY=

Available schemes

There are several built-in schemes to choose from, which run the gamut from
useful for debugging to variously higher levels of security.

	The no password scheme throws away the password and always returns the
empty string, but with a properly formatted password.

>>> from flufl.password.schemes import NoPasswordScheme
>>> show(make_secret('my password', NoPasswordScheme))
{NONE}

	The clear text scheme returns the original password in clear text, but
properly formatted.

>>> from flufl.password.schemes import ClearTextPasswordScheme
>>> show(make_secret('my password', ClearTextPasswordScheme))
 {CLEARTEXT}my password

	The SHA1 password scheme encodes the SHA1 hash of the password.

>>> show(make_secret('my password', SHAPasswordScheme))
{SHA}ovj3-hlaCAoipokEHaqPIET58zY=

	The salted SHA1 scheme adds a random salt to the password’s digest.

>>> from flufl.password.schemes import SSHAPasswordScheme
>>> show(make_secret('my password', SSHAPasswordScheme))
{SSHA}...

	There is an RFC 2898 [http://www.faqs.org/rfcs/rfc2898.html] password encoding scheme.

>>> from flufl.password.schemes import PBKDF2PasswordScheme
>>> show(make_secret('my password', PBKDF2PasswordScheme))
{PBKDF2 SHA 2000}...

Custom schemes

It’s also easy enough to create your own scheme. It must implement a static
make_secret() method, which you can inherit from a common base class. The
class must also have a TAG attribute which gives the unique name of this
hashing scheme.

The scheme should be registered so that it can be found by its tag for
verification purposes. This can be done using the @register descriptor.

>>> from codecs import getencoder
>>> from flufl.password import register
>>> from flufl.password.schemes import PasswordScheme

>>> @register
... class MyScheme(PasswordScheme):
... TAG = 'CAESAR'
... @staticmethod
... def make_secret(password):
... # In Python 3, this is a string-to-string encoding. The
... # caller already turned `password` into a byte string, so
... # we have to pass it back through a string to rotate it.
... # We also can't just call .encode('rot_13') on the string
... # because Python 3.2 chokes on the returned string (it expects
... # a bytes object to be returned). Sigh.
... as_string = password.decode('utf-8')
... encoder = getencoder('rot_13')
... return encoder(as_string)[0].encode('utf-8')

>>> show(make_secret('my password', MyScheme))
{CAESAR}zl cnffjbeq

Hashed passwords are always bytes.

>>> isinstance(make_secret('my password', MyScheme), bytes)
True

Verifying a password

When the user entered their original password, you hashed it using one of the
schemes mentioned above. You are only storing this hashed password in your
database.

The user now wants to log in, so she provides you with her plain text
password. You want to see if they match.

The easiest way to do this is to give both the plain text password the user
just typed, and the hash password you have in your database.

>>> from flufl.password import verify
>>> verify(b'{SHA}ovj3-hlaCAoipokEHaqPIET58zY=', 'my password')
True

Of course, if they enter the wrong password, it does not verify.

>>> verify(b'{SHA}ovj3-hlaCAoipokEHaqPIET58zY=', 'your password')
False

Your custom hashing scheme must implement the check_response() API in order
to support password verification. The PasswordScheme base class supports
the most obvious implementation of this, which serves for most schemes. For
example, the Caesar scheme does not need to implement a check_response()
method.

>>> verify(b'{CAESAR}zl cnffjbeq', 'my password')
True

User-friendly passwords

This package also provides a convenient utility for generating user friendly
passwords. These passwords gather random input and translate them into pairs
of vowel-consonant (or consonant-vowel) syllables. It then strings together
enough of these syllables to match the requested password length. In theory,
this produces relatively secure passwords that are easier to pronounce and
remember. The security claims of these generated passwords have not been
evaluated.

>>> from flufl.password import generate
>>> my_password = generate(10)
>>> len(my_password)
10
>>> sum(1 for c in my_password if c in 'aeiou')
5
>>> sum(1 for c in my_password if c not in 'aeiou')
5

 Copyright 2004-2015, Barry A. Warsaw.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	flufl.password 1.4a1 documentation

NEWS for flufl.password

1.4 (201X-XX-XX)

1.3 (2014-09-24)

	Fix documentation bug. (LP: #1026403)

	Purge all references to distribute.

	Describe the switch to git and the repository move.

1.2.1 (2012-04-19)

	Add classifiers to setup.py and make the long description more compatible
with the Cheeseshop.

	Other changes to make the Cheeseshop page look nicer. (LP: #680136)

	setup_helper.py version 2.1.

1.2 (2012-01-23)

	Fix some packaging issues.

	Remove tox.ini.

	Bump Copyright years.

	Update standard template.

	Eliminate the need to use 2to3, and fix some Python 3 deprecations.

1.1.1 (2012-01-01)

	Ensure all built-in schemes are registered by importing them in the
__init__.py file.

1.1 (2011-12-31)

	Add user-friendly password generation API.

1.0 (2011-12-31)

	Initial release.

 Copyright 2004-2015, Barry A. Warsaw.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	flufl.password 1.4a1 documentation

Index

 Copyright 2004-2015, Barry A. Warsaw.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		flufl.password 1.4a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2004-2015, Barry A. Warsaw.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

